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INTRODUCTION 

This project aims the recognition via webcam stream of faces for a security purposed application. The 
starting point is an already trained network, part of FaceNet system [1], whose structure is going to 
be described later, as well as a GitHub project based on the same system [2] as a code reference. The 
solution presented is indeed intended as a starting point for further development. 

Various packages were imported for the correct implementation of the program, among which 
OpenCV and Scikit. The code is written in python. 

THE WORKING PRINCIPLE 

The general cascade of events taking place in the application is the following. In the next sections, 
more details are going to be provided. 

The image acquired by the webcam is analysed, looking for faces. Once the faces have been detected, 
the corresponding portions of the image are fed to the neural network, which returns the relative 
descriptors. The descriptors are then associated to a class, where each class is the ID number of a 
person among the ones present in the Dictionary.txt. The resulting names and frames of the faces 
are then drawn on the image and showed on video. 

THE NETWORK 

The network used in FaceNet is a CNN of 22 layers, having as output a descriptor of 128 bits trained 
with a triplet loss function aiming to minimize the distance of descriptors for similar images, while 
maximizing it for images with different subjects. In order to focus on recognition rather than on the 
network, further details on the network are just referenced [3].  

In the GitHub template, the trained weights associated with each layer of the network were singularly 
loaded back to the network at the beginning of each execution. For the sake of speed, a model called 
“net_model.h5” has been obtained in substitution of these weights, so that the initialization of the 
net is faster.  

SVM – SUPPORTED VECTOR MACHINE 

The descriptors from the network summarize the important features of the detected faces in the 
image with a very small set of numbers. In order to recognize the persons in the image these 
descriptors have to be assigned a class based on their characteristics. At the very beginning, this task 
was done looking for the minimum Euclidean distance between database and image descriptors 
according to the FaceNet system, but the results were not satisfactory. Therefore, an SVM method 
from Scikit called SVC [4] has been deployed. This basically assigns portions of the descriptor space 
to the different classes based on a training set, where various images of each person are used to 
divide the 128-dimension space in sections, one for each class.  



The training images are searched in “. /images_video/”, where each frame was extracted from a 
recorded video using the code in “frameFromVideo.py”. The current training set is composed of 
around 200 training images per class with less than 10 classes in total, which means less than 10 
different identities to be recognized. The trained SVM object, for the sake of speed as well, is saved 
after training and loaded at the beginning of each next execution, since the training needs around 10 
minutes with the available equipment. (No GPU, i3 processor) 

THE RECENT_ID LIST 

Although during the recognition process we strive for the achievement of a continuous correct 
identification, it is possible to encounter some isolated misidentifications due to a whole variety of 
reasons. In order to filter out these spurious results, the use of a list of recent identification might 
come in handy. The idea is based on the fact that for a video stream, the image currently analysed 
and the ones considered immediately before should be similar, therefore producing comparable 
results in terms of identification. Then by comparing the recent past with the present we might ideally 
be able to identify some erroneous results, substituting them with the verified output of the previous 
images. 

This idea has yielded an increase in robustness but lacks precision in some known cases, that are 
going to be discussed during the analysis of the relative coding. Some proposals for an improved 
robustness are discussed as well. 

 

FROM INPUT TO OUTPUT 

 

 

Following the steps in the code and the nomenclature in the figures, the sequence of actions is 
analysed: 

1- Initialization: 

 



The model of the network is loaded at the very beginning, called “net_model.h5”, as well as the SVM 
model “FaceDatabase.sav”. If the latter is not present, there are two possible reasons: the first one 
is that it has never been created, the second that the training set of images and/or the entries of the 
dictionary have been modified, then the model was deleted so to be updated by building it again. In 
case the .sav file is not found, a new one is built automatically. 

The building process for the SVM model is in 2 steps. First the function 
prepare_database_for_svm(...) is called, where each image in the folder is passed to the 
detector, the face (should be one) is identified and cropped, then passed through to the network 
whose job is to return the associated descriptor. Each image is named in the fashion “%d_%d”, where 
the first integer is the ID of the person in the picture, and the second is the image number. In this 
way each image is labelled as belonging to a particular person, so we end up having a long series of 
descriptors, each one associated with a class. The second step is the creation of the SVM model itself 
based on the obtained information.  

Now the main function webcam_face_recognizer(...) can be called, which opens the stream from 
webcam and the relative windows, as well as initializing the list of the recent recognized identities 
with ‘-1’ (these will become helpful in the following stages). 

2- Detection: 

 

Detection was being studied by a different student in T3LAB during the development of this project. 
Therefore, as a temporary substitute, an OpenCV function called 
haarcascade_frontalface_default was used, which yields the drawback of being able to detect, 
then recognize, only frontal faces. The developed recognition system however is not limited to frontal 
images, so that once the two projects (detection + recognition) are merged, a more complete solution 
is obtained. The current set of images used for training the SVM is mainly of frontal images, so it 
would be necessary to update the database of labelled images as well.  

3- Recognition 

The Haar detector returns the position of the detected faces in the image from a greyed version of it. 
Each of these detected faces go under the recognition process. Before this however, a subset of the 
most recent identifications is selected from Recent_ID and called top (A), so to be used for 
processing the image as discussed previously. The more faces are detected in the current image, the 
longer is the selected subset, since the previous images are likely to have produced more useful 
identities. 

This top list with the previous identities is flushed of the ‘-1’, whose meaning is “no identity”. These 
values are instrumental for filling the list at the beginning of execution, when no identity has been 
found yet, or after a period of length FLUSH_BUFFER with no faces in the image. A series of empty 
images might mean that the main actors are changing, so that the subjects detected in the future 
images are going to be different from the previous ones. For avoiding the past identities (that are 
now likely to be wrong) to influence the current recognitions, the buffer is filled with ‘-1’. 

 

  



 

For each face in the images an initial guess on the identity is stored in the variable identity via 
find_identity_svm(…) . For clarity, at this stage we refer to these identities as ID_phase1. For 
doing this, the function calls get_box(…)for cropping the region of interest, computes the encoding 
through the neural network and guesses the identity  using the SVM model.predict. Here is the first 
filter for the guesses, which is a threshold based on the probability of the instance to belong to that 
particular class, computed via model.predict_proba(..). The filtered-out guesses are flagged as 
unknown with the ID ‘0’. These new identities are referred as ID_phase2. (B) 

The ID_phase2 are now added to the recent_ID list, and the last entry of this list is eliminated, so to 
maintain the same length. It has to be noted that ID_phase2 are not used as recent identifications 
for the current image, since the comparison has to be based only on the previous images. This is why 
the list top is selected before any processing on the image (A before B) 

Now the guesses are filtered again, this time looking at the recent entries of top, meaning at the 
most recent identities of the previous images. It’s likely that if a person is present in the current image, 
it was present also in the previous ones. Therefore, so to filter out wrong temporary identifications, 
the ID_phase2 that are present in the top list at least MIN_FACE_BUFF times are considered to be 
authentic, whereas the ones that do not respect this requirement have to wait for all ID_phase2 to 
be processed (C). 



The confirmed identities, referred now as ID_phase3, are written in the “Results.txt” file, the 
corresponding name in the dictionary is drawn in the picture, and all the entries matching with that 
validated ID are removed from a copy of top, used so to keep the original intact, called top_copy.  

All the zeros in top_copy are deleted since we don't want those to affect the assignment of the invalid 
ID_phase2.  

Once all the zeros representing unknowns in the list are deleted from top_copy and after waiting for 
all the ID_phase2 to be processed, the invalid ID_phase2 are assigned a new identity called ID_phase4, 
in particular the most common taken from top_copy. This is why ID_phase3 are removed from it, so 
to ensure that no ID_phase4 is equal to an ID_phase3. In this way we ensure that one ID appears only 
once per image on screen (D). The exception to this is for ID_phase3 being a ‘0’, namely “Unknown”, 
that are not deleted once found since multiple unknown faces might be found in a single image at 
the same time. 

The reason for assigning the most common entries in top_copy is that these identities might 
correspond to figures not present in the image anymore, or to faces currently in the image but 
misclassified. In the latter case, assuming a small number of wrong assignments, this strategy filters 
some of these classification errors. ID_phase4 are written as results, removed from top_copy and 
drawn in the image as well. 

It has to be pointed out that ‘-1’ in (A) and ‘0’ in (D) are flushed from the list so that they cannot 
become ID_phase4 at this stage. 

Furthermore, identities flagged as unknown are stored in recent_id like any other ID so to ensure 
that if a person that is not in the database keeps appearing in the image, it fulfils the condition on 
MIN_FACE_BUFF (C) and is labelled “unknown”, rather than being invalid and assigned with one in 
top_copy.  

This method has shown to improve the robustness especially for wrong isolated classifications. It fails 
however in assigning back these common IDs when multiple faces are in the wrong class. If, for 
example, Anna and Luca were assigned the classes “Paolo” and “Giovanni” respectively, this 
algorithm might recognize the wrong classification in (C) but then assign the label “Anna” to Luca and 
“Luca” to Anna, given that no control is made on the location of the previous faces. This further 
development might significantly increase the overall reliability of the process. 

The very same coordinate-based control might improve the performances of this method also for the 
cases in which the ID_phase2 marked as invalid is already present in the image, such as Anna being 
assigned with “Paolo” while Paolo is in the image. In this case, depending on the image, the label 
“Paolo” might be kept by Anna instead of belonging to Paolo. 

After these steps the frame rate is calculated as the inverse of the time needed for processing the 
image and then drawn on it at the upper left corner. 

The last check is on the variable empty_frame, that counts the number of consequent frames in 
which no face was detected. As soon as a certain FLUSH_BUFFER number is reached, recent_id is 
flushed and filled with ‘-1’. This is again for making sure that the last people present in the image do 
not influence the recognition of the current and future ones if a relatively long period of time passed 
with no people in the scene. 

The image is then shown alongside the original one. 

 



PREVIOUS STRATEGIES 

Rather than relying on a SVM techniques, FaceNet achieves recognition by comparing descriptors 
using the Euclidean distance. More specifically, the descriptor of the frame from webcam is 
compared with the descriptors in the database, and the one that minimizes the distance is labelled 
as a match. The database in this case is a list of descriptors: each one of those is obtained from a 
single image of reference, one for each person. Even in this case, if the minimum distance found after 
searching the database is above a certain threshold, the face is marked as Unknown.  

This method was the one initially deployed during the development so to follow the standard FaceNet 
implementation. However, after few days of tests and adjustments, the results were still not 
satisfactory. This is the main reason why the SVM approach has taken place over the Euclidean 
distance. Some of the previous functions based on this approach are still in the code just as reference. 

RESULTS 

The results were stored for each execution in “Results.txt”, in the format of a series of IDs where each 
row represents a frame of the stream, and the relative identities are separated by a tab.  

Here an example of recognition with “Francesco” as the single subject in the image, while moving, 
for longer and shorter executions: 

Dictionary  times % times % times % times % times % RESULTS 
Unknown 0 23 13% 7 5% 3 4% 205 15% 20 9% 9% 

Andrea 1 0 0% 0 0% 0 0% 3 0% 0 0% 0% 
Federica 3 7 4% 5 4% 7 9% 11 1% 4 2% 4% 

Francesco 4 152 84% 119 88% 69 87% 1084 78% 201 88% 85% 
Buratti 6 0 0% 5 4% 0 0% 87 6% 3 1% 2% 

             
TOT  182  136  79  1390  228   

 
“Francesco” was correctly recognized around 85% of the times.  

The percentage of unknowns might be adjusted by choosing different thresholds for labelling. The 
one used for these experiments was based on empirical evaluations.  

Here with “Francesco” and “Elisa”, both in the scene. Given that both subjects were in the image at 
the same time for the whole experiment, a perfect combination of detection and recognition would 
yield as result 50% for both “Francesco” and “Elisa”: 

Dictionary  free free free static moving RESULTS 
Unknown 0 11 9% 7 6% 70 28% 5 2% 74 49% 19% 

Andrea 1 0 0% 0 0% 0 0% 0 0% 4 3% 1% 
Federica 3 0 0% 0 0% 0 0% 0 0% 0 0% 0% 

Francesco 4 43 35% 38 33% 108 43% 114 48% 34 22% 36% 
Buratti 6 0 0% 0 0% 0 0% 0 0% 0 0% 0% 

Elisa 8 68 56% 69 61% 74 29% 119 50% 40 26% 44% 

             
TOT  122  114  252  238  152   

 

Analysing free, static and moving scenarios, an overall misclassification rate of 20% was found, which 
complies with the previous experiment. 



As further test, a video is attached showing different trials. In particular, some have a name at the 
bottom left corner of the blue frame, which represents ID_phase2, so before the strategy with 
recent_id is applied (C). The top left names instead are ID_phase3 and ID_phase4, so to prove the 
effectiveness of the strategy. A person in the video was left out of the database so to check the 
behaviour for unknowns. A folder with images for identity reference are attached as well. Moreover, 
some video sections were increased in speed, then in these cases the frame rate printed on video 
should not be considered.  

It has been noted that frame rate heavily depends on faces being present in the image or not, 
probably because of the passage through the net. 

CONCLUSIONS & FUTURE DEVELOPMENT 

This system has proved to be somewhat effective, however needs further refinements on many 
aspects for a security application. Among these: 

- Use a different Neural Network. The used one was proposed in combination with the 
Euclidean norm technique, providing a small set of numbers as descriptors. However, for this 
application, different descriptors and SVM oriented network might improve the overall 
performances; 

- Implementation of the detector from the student in T3LAB for a more complete solution; 
- The parameters in the code like the length of lists and the threshold levels might be optimized 

for better performances; 
- Add a coordinate-based stage (C) so to check the consistency of new identifications based on 

both their location and the past images. The idea might be to assign ID_phase4 according to 
the faces identified in previous images but only looking at a neighbourhood of the current 
face position, so to avoid inverted assignments in (C); 

- In order to improve the intensity invariance property of the system, and equalization of the 
channels was initially implemented. However, it seemed to worsen the results in terms of 
recognition, so the code was just left commented as reference. Nonetheless, scale and 
intensity invariances for recognition are strongly suggested as further developments. 
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