
UNIVERSITÀ DI BOLOGNA

School of Engineering

Master Degree in Automation Engineering

Distributed Control Systems

Project 6:
Distributed Dual Gradient Tracking for Microgrid

Control

Professor: Giuseppe Notarstefano

Students: Baljinder Singh Bal
Francesco Taurone

Marco Toschi
Sean Brennan

Academic year 2018/2019

Abstract

The goal of this project is to solve two optimisation problems by means of
distributed algorithms. In both tasks, multiple agents are present in a net-
work and perform local computations while communicating with neighbour-
ing agents to solve the overall problem. First, a cost coupled maximisation
problem is solved by applying the algorithm presented in Qu and Na Li [2].
Then a constraint coupled minimisation problem is considered. In order
to find a distributed optimisation algorithm, the structure of the functions
and of the constraints is exploited and the associated dual problem is found.
The algorithm implemented in the first part is further developed to solve
this dual problem showing the expected convergence of all the chosen perfor-
mance parameters. To verify the correctness of the algorithms, simulations
are performed and the results presented using MATLAB.

Contents

Introduction 7

1 Task 1 - The Concave Problem 9
1.1 Introduction . 9
1.2 Problem Setup . 9
1.3 Implementation . 11

1.3.1 Q Matrix . 11
1.3.2 R Matrix . 11
1.3.3 LM Matrix . 11
1.3.4 S Matrix . 11
1.3.5 W Matrix . 11
1.3.6 Step Size . 11
1.3.7 The algorithm in MATLAB 12

2 Task 2 -Dualisation of a Microgrid Control Problem 13
2.1 Developing the Algorithm . 13

3 Task 3 - Solving the Microgrid Control Problem 16
3.1 Problem set up . 16

3.1.1 Generator Cost . 16
3.1.2 Storage Cost . 17
3.1.3 Controllable Load Cost 18
3.1.4 Trade Cost . 18

3.2 Implementation . 18
3.2.1 Centralised Method 19
3.2.2 Distributed Method 19

4 Results 21
4.1 Task 1 . 21

4.1.1 Simulation Parameters 21
4.1.2 Plots . 21

4.2 Task 3 . 23
4.2.1 Simulation Parameters 23
4.2.2 Plots . 24

4

5 Conclusions 29

Bibliography 30

List of Figures

4.1 Graph of the agents of the experiment generated for task 1. . 22
4.2 Task 1 - Evolution of max

i
||λti − λtmean||. 22

4.3 Task 1 - Evolution of max
i
||λti − λ∗||. 23

4.4 Graph of the agents of the experiment generated for Task 3. . 24
4.5 Task 3 - Evolution of max

i
||λti − λtmean||. 25

4.6 Task 3 - Evolution of max
i
||λti − λ∗||. 26

4.7 Task 3 - Evolution of max
i
||sti||. 27

4.8 Task3 - Evolution of max
i
||pti − p∗||. 28

4.9 Task 3 - Evolution of |f − f∗|. 28

Introduction

In order to solve a constrained coupled optimisation problem, well known
centralised methods are available in literature. In general, constrained opti-
misation problem can possibly be solved with methods similar to the feasible
direction descent method or with gradient projection techniques. Here we
develop a solution based on duality theory that exploits the structure of the
problem in order to derive a distributed solution. In this framework, graph
theory is used to model the communication between agents and local com-
putations are performed using information coming only from neighbouring
agents. This allows the algorithm to solve the minimisation problem in a
distributed fashion. In particular, in the first part of this project, a so called
’cost coupled’ problem is solved by applying a well known result from the
literature([2]. In the second part of this project a ’constrained coupled’ op-
timisation problem arising in microgrid control is solved(). The distributed
algorithm implemented in the first part is then adapted to suitably solve the
dual maximisation problem associated with the primal minimisation prob-
lem. To show the correctness of the algorithm, a MATLAB implementation
is used to perform simulations.
A MATLAB implementation of the algorithm presented in Qu and Na Li [2]
is performed on the cost-coupled concave optimisation problem (Task 1).
Then, a constrained-coupled optimisation problem presented in Notarnicola
and Notarstefano [1] is analysed and the dual function is found (Task 2).
Finally, the algorithm implemented in Task 1 is adapted to solve the dual
problem (Task 3) and the simulation results are presented.

Motivations

Given the growing global demand for energy it is becoming more important
to have intelligent energy systems such as the smart grid. In many real world
applications and in industry keeping energy costs to a minimum is very
important. To do so, it is essentially an optimisation problem. This gives
motivation to this paper where the optimisation of a microgrid is considered
with several cost constraints imposed.

7

8

Contributions

A method based on duality theory is used to solve a ’constrained coupled’
optimisation problem. The dual function is formed by a sum of local func-
tions and is maximised using only local computation and communication.
The smoothness is exploited to obtain a fast convergence of the dual prob-
lem solution while also assuring primary recovery. The algorithm that is
used is a combination of gradient descent and a gradient estimation scheme
that utilises previously computed information to achieve fast and accurate
estimation of the average gradient. The accuracy of this procedure is tested
on the dual problem related to a minimisation problem involving coupling
constraints.

Chapter 1

Task 1 - The Concave
Problem

1.1 Introduction

In this first chapter the general problem is described and the algorithm to
solve it is outlined. We consider a network of N agents each associated with
a strictly convex function

qi : RT → R ∀i ∈ {1, ..., N} (1.1)

with local communication and computation. The communication is mod-
elled by an undirected and connected graph G = (I,E) where I is the set of
N nodes and E ⊂ I × I. Agent i communicates with agent j if and only if
(i, j) ∈ E. Moreover wij = 0 ∀(i, j) 6∈ E.

1.2 Problem Setup

The optimisation problem that we want to solve is defined as

max
λ

N∑
i=1

qi(λ) i ∈ {1, ..., N} (1.2)

Where λ ∈ RT 1. The cost function is the sum of quadratic functions

qi(λ) = −(λTQiλ+ rTi λ) i ∈ {1, ..., N} (1.3)

and matrices Qi are positive definite.
In order to solve this problem we exploit a method to solve a similar problem

1In the description of Task 1, we use T instead of S (used in the paper) to avoid
confusion with the gradient tracking vector.

9

10

(1.4) presented in Qu and Na Li [2] which makes use of the distributed
algorithm (1.5) and (1.6) with two updates per agent.

min
x
f(x) , min

x

1

N

N∑
i=1

fi(x) (1.4)

xt+1
i =

N∑
j=1

wijx
t
j − ηsti (1.5)

st+1
i =

N∑
j=1

wijs
t
j +∇fi(pt+1

i)−∇fi(pti) (1.6)

Where xti is the estimate at time t of the minimum of the global minimisation
problem of agent i, N is the number of agents, wij is the ijth entry of the con-
sensus weighed matrix W, which is doubly stochastic, η is the fixed step size,
si is the estimate of the average gradient 1

N

∑N
i=1∇fi(xi(t)). The algorithm

is initialised by taking an arbitrary value of xi(0), and si(0) = ∇fi(xi(0)).
The original problem (1.2) is then adapted to (1.7) to allow the application
of algorithm described by the updates (1.6) and (1.5).

min
λ

1

N

N∑
i=1

q̄i(λ) (1.7)

Where q̄i(λ) = −Nqi(λ). It follows that the updates that each agent must
perform can be described as

λt+1
i =

N∑
j=1

wijλ
t
i − ηsti (1.8)

st+1
i =

N∑
j=1

wijs
t
j +∇q̄i(λt+1

i)−∇q̄i(λti) (1.9)

Where the gradient of q̄i is

∇q̄i(λ) = −N∇qi(λ) (1.10)

and in particular, in our case we have

∇q̄i(λ) = N(2Qiλ+ ri) (1.11)

The initial values are set accordingly, taking any λ0i and s0i = −N∇qi(λ0).

11

1.3 Implementation

The algorithm is implemented using MATLAB and all variables are ran-
domly generated. In the following we report the MATLAB structures used
for the implementation. We consider the dimension of each vector λi and
si to be T. N is the number of agents in the communication graph and
MAXITERS is the maximum number of iterations the algorithm runs for.

1.3.1 Q Matrix

Each agent has its own Qi matrix, positive definite and diagonal with ran-
domly generated positive entries. All the different Qi matrices are stacked
in a 3D matrix, Q, with each layer associated with a different agent. The
dimension of Q is (T x T x N) with the third index indicating different
agents.

1.3.2 R Matrix

Each agent has its own ri vector. All the different ri vectors are combined
in a 2D matrix, R, with each column associated with a different agent. The
dimension of R is (T x N) with the second index indicating different agents.
Each entry being randomly generated.

1.3.3 LM Matrix

The matrix LM has dimension (T x MAXITERS x N) and is initialised to
have all zero elements. Each tth column of the (T x MAXITERS) matrix
LM(:, t, j) stores the vector of dimension T associated with the jth agent
λtj .

1.3.4 S Matrix

The matrix S has dimension (T x MAXITERS x N) and is initialised to have
all zero elements. Each tth column of S(:, t, j) stores the vector of dimension
T associated with the jth agent stj .

1.3.5 W Matrix

The weighted consensus matrix is generated using the code and procedure
presented in the lectures of the course. It is chosen to be strongly connected.

1.3.6 Step Size

According to Qu and Na Li [2] the algorithm works for a constant step size
which is fixed at the beginning of each simulation.

12

1.3.7 The algorithm in MATLAB

Once all the matrices and variables have been created and initialised prop-
erly, the algorithm runs with three loops. The outer loop runs from t ∈
{1,MAXITERS − 1}, the middle loop runs from i ∈ {1, N} and the inner
loop runs from j ∈ {1, N}. The outer loop iterates through the second
dimension (time) of each matrix while middle and inner loops go through
agents and states.
To check the obtained results the optimum values are computed using also
the centralised algorithm provided by MATLAB function ”quadprog”. The
error between both results are plotted. These results are shown and dis-
cussed in Section 4.1.

Chapter 2

Task 2 -Dualisation of a
Microgrid Control Problem

2.1 Developing the Algorithm

This task deals with the optimisation of a microgrid control with different
costs and constraints. The problem considered is defined as

min
p1,...pN

N∑
i=1

fi(pi) (2.1)

subj. to
∑
i∈gen

pτgen,i +
∑
i∈stor

pτstor,i +
∑

i∈conl
pτconl,i + pτtr −Dτ = 0

pi ∈ Xi

∀τ ∈ [0, T]

∀i ∈ {1, ..., N}

The powers associated with each type of device in the microgrid has an as-
sociated cost and the task deals with the minimisation of the sum of such
costs. The minimisation must also consider a coupling relationship (con-
straint) that relates the different powers of all the devices for each instant
of time in a horizon from 0 to T. This can be written in a more compact
form using a vector of dimension T for each agent by storing the powers
at different times from 1 to T in a single vector. We can then rewrite the
coupling equality constraint∑

i∈gen
pgen,i +

∑
i∈stor

pstor,i +
∑

i∈conl
pconl,i + ptr −D = 0 (2.2)

The goal now is to find the dual function of this constrained minimisation
problem and to adapt so the distributed algorithm can be applied (1.8) and

13

14

(1.9) described previously. To do so, it is convenient to introduce another
simplifying compact notation of the costs

hi(pi) = pi, ∀ i ∈ gen ∪ stor ∪ conl (2.3)

htr(ptr) = ptr −D (2.4)

The problem (2.1) can now be restated

min
p1,...pN

N∑
i=1

fi(pi) (2.5)

subj. to

N∑
i=1

hi(pi) = 0

The Lagrangian function associated with this problem is

L((p1, . . . , pN), λ) =

N∑
i=1

fi(pi) + λT (

N∑
i=1

hi(pi)) (2.6)

It follows that the dual function is

q(λ) = inf
pi(j)∈Xi

N∑
i=1

(fi(pi) + λThi(pi)) =

N∑
i=1

qi(λ) (2.7)

∀i ∈ {1, ..., N} and ∀j ∈ {0, ..., T}. The dual problem can now be stated

max
λ

q(λ) (2.8)

As the dual problem involves the maximisation of the dual function with
respect to λ, we can rewrite it as the minimisation over λ of the negative of
the dual function

min
λ
−q(λ) (2.9)

With reference to the algorithm in Task 1, the problem can be restated in
a form suitable for the direct application of the algorithm from Task 1

min
λ

1

N

N∑
i=1

q̄i(λ) (2.10)

Where q̄i(λ) = −Nqi(λ)

The update rules for each agent are defined by the algorithm

p t+1
i = arg min

pi(j)∈Xi
(fi(pi) + (λti)

Thi(pi)) (2.11)

15

λt+1
i =

N∑
i=1

wijλ
t
j − ηsi(t) (2.12)

st+1
i =

N∑
i=1

wijs
t
j +∇q̄i(λt+1

i)−∇q̄i(λti) (2.13)

∀i ∈ {1, ..., N} and ∀j ∈ {0, ..., T}. Where the initial conditions are fixed by
picking any λ0i and s0i = ∇q̄i(λ0i). In particular, with reference to (2.3), the
expression of the gradient for each agent is

∇q̄i(λti) = −Nhi(pti) = −Npti (2.14)

for all nodes except for the trade node which has the following expression
for the gradient

∇q̄i(λti) = −N(hi(p
t
i)−D) = −N(pti −D) (2.15)

Section 3 details the implementation of this algorithm in MATLAB and
Section 4.2 presents the obtained results.

Chapter 3

Task 3 - Solving the
Microgrid Control Problem

3.1 Problem set up

The algorithm described in Task 1 is adapted to solve problem (2.1). The
first step is to model and generate the constraints for each cost, using a
vectorial form.

3.1.1 Generator Cost

The generator has a cost function described in (3.1)

T∑
τ=0

[α1p
τ
gen,i + α2(p

τ
gen,i)

2] (3.1)

with constraints (3.2) and (3.3)

¯
p ≤ pτgen,i ≤ p̄, ∀τ ∈ [0, T] (3.2)

¯
r ≤ pτ+1

gen,i − p
τ
gen,i ≤ r̄, ∀τ ∈ [0, T − 1] (3.3)

The first constraint (3.2) is modelled by generating upper and lower bounds
P̄ and

¯
P respectively. Each in a column vector of dimension (T x 1) with

randomly generated entries. Care is taken to ensure that the lower bound

¯
P is less that the upper bound P̄ by making it negative while the upper
bound P̄ is positive.
The bounds R̄ and

¯
R for the second constraint (3.3) are generated in the

same way to those of (3.2) described above. To handle the pτ+1
gen,i − pτgen,i

part of the constraint it uses a shifted diagonal matrix B (3.5), where B has
dimension (T-1 x T). The constraint (3.3) is therefore modelled as

¯
R ≤ Bpgen,i ≤ R̄ (3.4)

16

17

B =


−1 1 0 . . . 0
0 −1 1 . . . 0
...

...
...

...
...

0 −1 1
0 0 −1

 (3.5)

The final expression for generator’s costs (3.1) is modelled in a vectorial
form as

fgen,i = α11
T pgen,i + α2 p

T
gen,i pgen,i (3.6)

Where 1 is a column vector of ones of dimension T.

3.1.2 Storage Cost

The storage agents have a cost function (3.7)

ε ‖pstor,i‖2 (3.7)

with constraints

−dstor ≤ pτstor,i ≤ cstor, ∀τ ∈ [0, T] (3.8)

qτ+1
stor,i = qτstor,i + pτstor,i, ∀τ ∈ [0, T − 1] (3.9)

0 ≤ qτstor,i ≤ qmax, ∀τ ∈ [0, T] (3.10)

The first storage constraint (3.8) is modelled in the same way as the first
generator constraint (3.2) described in Section 3.1.1
The second one (3.9) is intended as a constraint on the sum of pτstor,i for
each time instant in the period. qτstor,i represents the partial sum of those

at time τ , with q0stor,i = 0. In order to model the sum in a vectorial fashion,
a lower triangular matrix of ones and with dimension (T-1 x T) named Btri
is introduced. The sum is then modelled as

Qstor,i = Btri pstor,i (3.11)

where Qstor,i and pstor,i are the vectorial forms of qτstor,i and pτstor,i in a period.
The third storage constraint (3.10) is modelled in the same way as the first
generator constraint (3.2) described in Section 3.1.1 and qmax is randomly
generated and stacked in a vector of dimension (T-1, 1).
The final expression for storage costs (3.7) are modelled in a vectorial form
as

fstor,i = ε p Tstor,i pstor,i (3.12)

18

3.1.3 Controllable Load Cost

The controllable load has a cost function

T∑
τ=0

βmax{0, pτdes,i − pτconl,i}+ ε‖pconl,i‖2 (3.13)

with constraints 1

−P τconl ≤ pτconl,i ≤ P τconl, ∀τ ∈ [0, T] (3.14)

The constraint (3.14) is modelled in the same way as the first generator con-
straint (3.2) described in Section 3.1.1 with P being a vector with randomly
generated entries.
The cost function (3.13) is modelled as

fconl,i = βmax{0, Pdes,i − pconl,i}T1 + ε p Tconl,i pconl,i (3.15)

where β and Pdes are randomly generated.

3.1.4 Trade Cost

The trade node has a cost function

T∑
τ=0

(−c1pτtr + c2|pτtr|) + ε‖ptr,i‖2 (3.16)

with constraints
−E ≤ pτtr ≤ E, ∀τ ∈ [0, T] (3.17)

The constraint (3.17) is modelled in the same way as the first generator
constraint (3.2) described in Section 3.1.1 with E being a vector of randomly
generated entries.
The trade cost function (3.16) is modelled as

ftrade,i = −c1ptr + c2|ptr|+ ε p Ttr,i ptr,i (3.18)

3.2 Implementation

The problem is solved in two ways in MATLAB, using a centralised and a
distributed method. The centralised method makes use of the CVX toolbox
while the distributed uses the fmincon function.

1Pconl is a vector of dimension (T+1, 1) with equal entries P τconl. P τconl refers to the P
in the task assignment, in order to avoid confusion with the matrix P storing all the pτi
the notation is changed.

19

The number of generators, storage devices and controllable loads are chosen
randomly, while there is always only one trade node. N is the sum of the
number of devices, where

N = Ngen +Nstor +Nconl +Ntrade (3.19)

The LM , S and gradf matrices are set up and initialised in the same way as
described in Section 1.2. Also matrices P , Perror and f are introduced. Ma-
trices P and Perror have dimension (T x MAXITERS x N), f has dimension
(1 x MAXITERS) and all are initialised to have all zero entries. The matrix
P is used to record the minimisation of each node at each iteration. Perror
is used to store the error at each iteration between the computed value of
P and the optimal value P ∗ obtained in the centralised method.
The f row vector is used to store the full cost value at each iteration in the
distributed method.

3.2.1 Centralised Method

The centralised method uses the CVX toolbox to solve the problem (2.1).
The constraints are modelled and implemented as described in Section 3.1.
CVX returns the Lagrange multipliers and the optimal P , P ∗ with the given
constraints. The returned values are stored and compared with the values
obtained from the distributed method.

3.2.2 Distributed Method

The distributed method begins by initialising the first columns of the S
and P matrices. P is initialised by using an instance of fmincon. S is
initialised using 2

S1
i = −NP 1

i (3.20)

and the initialised value of P , where i is the layer number in the 3D matrix.
Differently, the initial value of the trade node is initialised using

S1
i = −N(P 1

i −D) (3.21)

Once the matrices have been initialised, the distributed method implements
the algorithm used for Task 1 described in Section 1.2. Where ∇q̄i(λti) is
now being computed using (2.14) for the generator, storage and controllable
load nodes and using (2.15) for the trade node. There is an update to the P
matrix at each time instant using the fmincon function and the previously

2With S1
i meaning the column of agent i at the first iteration: S(:, 1, i) in MATLAB.

The same notation applies to P 1
i referring to P (:, 1, i)

20

calculated values of LM to calculate the gradient tracking.
f is updated at each iteration scuh that

f t =

N∑
i=1

(ftype,i(P
t
i)) (3.22)

where t is the time instant, i is the layer of the 3D matrix associated to
the type of agent and subscript type is the node type. The costs need to
be calculated differently depending on the type of node. Therefore Perror is
updated at each iteration with the update rule

P terrori = Popti − P ti (3.23)

The algorithm runs until the number of iterations (MAXITERS) is reached
or until the maximum error between the norm of λ and λ∗ is more that a
defined threshold, where λ is calculated at each iteration in the distributed
method and λ∗ is the optimal vector computed with the centralised method.
Once the simulation is stopped, the results between the distributed and
centralised methods are compared and plotted in Section 4.2.

Chapter 4

Results

4.1 Task 1

4.1.1 Simulation Parameters

In the following we report the main parameters used for the simulations.
The step size is η=0.001 1.
The number of nodes is N=5.
The dimension of the state of each agent is T=3.

4.1.2 Plots

The communication graph for Task 1 is shown in Figure 4.1. Each node also
has a self edge that is not shown on the graph for lucidity. The weight of the

self edge wii = 1 −
N∑
j=1
j 6=i

wij . In the following we consider as a performance

metric the error on the Lagrange multiplier computed using a centralised
algorithm and the estimate computed by each agent. In particular, in order
to prove the convergence to an agreed vector of Lagrangian multipliers, the
plot

max
i
||λti − λtmean||

displayed in Figure 4.2. This plot proves convergence by plotting the maxi-
mum norm of the error on lambda among all the agents. Therefore, if this
function converges to zero, it means that all the other agents are converging
too.

For proving optimality of the distributed solution, the

max
i
||λti − λ∗||

1 The step size has been empirically chosen by decreasing it until the convergence
behaviour was satisfactory.

21

22

Figure 4.1: Graph of the agents of the experiment generated for task 1.

0 2000 4000 6000 8000 10000

t

10
-16

10
-14

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

 max
i

t

i mean
||

Figure 4.2: Task 1 - Evolution of max
i
||λti − λtmean||.

23

0 2000 4000 6000 8000 10000

t

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

 max
i

t

i

*
||

Figure 4.3: Task 1 - Evolution of max
i
||λti − λ∗||.

should converge to zero, reported in Figure 4.3. As for the previous function,
the graph plotting the error with respect to centralised Lagrangian multiplier
proves that all the agents converge to the Lagrangian multiplier that makes
primal recovery possible. From this convergence, it can be deduce that the
optimisation problem in both centralised and decentralised version converge
to the same solution of the minimisation.
It should be noted that since we proved the agreement of the agents of the
Lagrangian multiplier, for the plot about the error with respect to the λ∗ it
would have been enough to prove the convergence of one of the agents.

4.2 Task 3

4.2.1 Simulation Parameters

In the following we report the main parameters used for the simulations.
The step size is η=0.001.
The number of generator nodes is N=4.
The number of storage nodes is N=3.
The number of controllable loads nodes is N=2.
The number of trade nodes is N=1.
The period is T=11. It has to be specified that the dimension of the state

24

is 12 since it is T + 1.

Figure 4.4: Graph of the agents of the experiment generated for Task 3.

Generator nodes corresponds to the nodes 1,2,3,4; Storage nodes corresponds to
the nodes 5,6,7; Controllable load nodes corresponds to the nodes 9; Trade node

corresponds to the node 10.

Figure 4.4 shows the digraph of the agents in Task 3 under the specified
parameters. The graph is undirected, each edge has an associated weight.
The sum of the weights on each node is equal to 1 as the adjacency matrix
is doubly stochastic. Each node also has a self edge that is not shown on

the graph for lucidity. The weight of the self edge wii = 1−
N∑
j=1
j 6=i

wij .

4.2.2 Plots

Here again, in order to prove the convergence to an agreed optimal vector
of Lagrangian multipliers, the plots max

i
||λti − λmean|| and max

i
||λti − λ∗||

are reported.
Additionally, the convergence to zero of the maximum norm of the vector
S, approximating the average of the gradient of the dual function, shows

25

that indeed all the agents converge to an agreed point of minimum for the
problem, since S drives the step size at each iteration shown in Figure 4.7.
The value of the vector P which solves the distributed problem therefore
converges to the centralised solution P ∗, shown in Figure 4.8.
As a final check of the minimisation problem and of the associated primal
recovery, Figure 4.9 shows the convergence of the minimum of the distributed
solution of the cost with respect to centralised one. This once again proves
that we reached the optimal solution.

0 500 1000 1500

t

10
-9

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

 max
i

t

i mean
||

Figure 4.5: Task 3 - Evolution of max
i
||λti − λtmean||.

26

0 500 1000 1500

t

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

 max
i

t

i

*
||

Figure 4.6: Task 3 - Evolution of max
i
||λti − λ∗||.

27

0 500 1000 1500

t

10
-6

10
-4

10
-2

10
0

10
2

 max
i
 || S

t

i
 ||

Figure 4.7: Task 3 - Evolution of max
i
||sti||.

28

0 500 1000 1500

t

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

 max
i
 || P

t

i
-P* ||

Figure 4.8: Task3 - Evolution of max
i
||pti − p∗||.

0 500 1000 1500

t

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

10
2

 | f-f* |

Figure 4.9: Task 3 - Evolution of |f − f∗|.

Chapter 5

Conclusions

A maximisation problem has been solved using the algorithm presented in
Qu and Na Li [2]. Then, a minimisation problem based on the sum of
local functions has been considered with the goal of solving it using only
local computations and communications. In order to find a distributed op-
timisation algorithm the dual problem has been found and solved using the
algorithm presented in Qu and Na Li [2]. The simulation has been carried
out on MATLAB and the results presented, showing the convergence of the
appropriate performance parameters.

29

Bibliography

[1] Ivano Notarnicola and Giuseppe Notarstefano. Constraint coupled dis-
tributed optimization: Relaxation and duality approach. arXiv preprint
arXiv:1711.09221, 2017.

[2] Guannan Qu and Na Li. Harnessing smoothness to accelerate dis-
tributed optimization. IEEE Transactions on Control of Network Sys-
tems, 5(3):1245–1260, 2018.

30

